sábado, 24 de outubro de 2020

 ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.


se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]



Tempo local (matemática)

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Uma amostra de um trajeto de um processo Itō junto com sua superfície de tempos locais.

Na teoria matemática dos processos estocásticos, o tempo local é um processo estocástico associado a processos de difusão como o movimento browniano, que caracteriza a quantidade de tempo que uma partícula dispende em determinado nível.[1] O tempo local aparece em várias fórmulas de integração estocástica se o integrando não é suficientemente derivável, tal como a fórmula de Tanaka.[2][3][4] Também é estudado em mecânica estatística no contexto de campos aleatórios.


Definição formal

Para um processo de difusão real , o tempo local de  até o ponto  é um processo estocástico. Matematicamente, a definição de tempo local é:

,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é o processo de difusão e  é a função delta de Dirac. É uma noção inventada por Paul Lévy. A idéia básica é que  é uma medida (reescalonada) de quanto tempo  dispendeu em  até o momento . Pode ser escrito como:

,X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


que explica porque é chamado de tempo local de  em . Para um processo de espaço de estado discreto , o tempo local pode ser expresso de forma mais simples como:[5]

.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Fórmula de Tanaka

fórmula de Tanaka fornece uma definição de tempo local para um semimartingale contínuo arbitrário  em :[6]

.X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Uma forma mais geral foi provada independentemente por Meyer[7] e Wang;[8] a fórmula estende o lema de Itô para duas funções diferenciáveis para uma classe mais geral de funções. Se é absolutamente contínuo com a derivada , que é de variação limitada, então:

,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é a derivada esquerda.

Se  é um movimento browniano, então para qualquer  o campo de tempos locais  tem uma modificação que é Hölder contínua em com expoente , uniformemente para  e .[9] Em geral,  tem uma modificação que é contínua em  e càdlàg em .

Fórmula de Tanaka fornece a forma explícita decomposição de Doob-Meyer para o movimento browniano refletido unidimensional, .

Teoremas Ray–Knight

O campo de tempos locais  associado a um processo estocástico no espaço  é um tema bem estudado na área de campos aleatórios. Os teoremas do tipo Ray-Knight relacionam o campo  com um processo Gaussiano associado.

Em geral, os teoremas Ray-Knight do primeiro tipo consideram o campo  em um momento de batimento do processo subjacente, enquanto que os teoremas do segundo tipo são em termos de um tempo de parada no qual o campo de tempos locais primeiro excede um dado valor.

Primeiro teorema de Ray–Knight

Seja  um movimento browniano unidimensional , e  um movimento browniano bidimensional padrão . Para definir o tempo de parada em que  primeiro atinge a origem, , Ray[10] e Knight[11] (independentemente) mostraram que,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


onde  é o campo dos tempos locais de , e a igualdade está na distribuição . O processo  é conhecido como o processo de Bessel ao quadrado.

Segundo teorema Ray–Knight

Seja  um movimento browniano unidimensional padrão , e seja  um campo associado dos tempos locais. Seja  a primeira vez em que o tempo local em zero excede 

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Seja  um movimento browniano unidimensional independente , então[12]


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Equivalentemente, o processo  (que é um processo na variável espacial ) é igual na distribuição ao quadrado de um processo de Bessel de dimensão 0, e como tal é markoviano.

Generalização dos teoremas de Ray–Knight

Os resultados do tipo Ray-Knight para processos estocásticos mais gerais têm sido intensamente estudados e as declarações (1) e (2) são conhecidos por processos Markov fortemente simétricos.




equação da difusão é uma equação em derivadas parciais que descreve flutuações de densidade em um material que se difunde. É também usada para descrever processos exibindo um comportamento de difusão.


Equação

A equação é geralmente escrita como:[1]

 .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Nesta expressão  é a densidade do material que difunde,  é o tempo, e  é o coeficiente de difusão coletivo,  é a coordenada espacial e o símbolo nabla (∇) representa o vetor operador diferencial del. Se o coeficiente de difusão depende da densidade, então a equação não é linear; de outra maneira seria linear. Se D é constante, então a equação se reduz à seguinte equação linear:

 .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Mais geralmente, quando D é uma matriz simétrico definida positiva, a equação descreve uma difusão anisótrica.

Dedução

A equação de difusão pode ser deduzida a partir da equação de continuidade. A mesma expressa que uma alteração na densidade em um sistema é devido a um fluxo em entrada ou a um fluxo em saída de material do sistema. Ou seja, não pode haver nem criação nem destruição de matéria.

 .

Nesta expressão  é o fluxo de material que difunde. A equação de difusão pode ser obtida facilmente desta relação quando é combinada com a Lei de Fick, que assume que o fluxo do material que difunde em qualquer parte do sistema é proporcional ao gradiente local de densidade:

.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 


Nenhum comentário:

Postar um comentário